Statistics Lab
STATISTICS FOR COLLEGE STUDENTS
Part I — FoundationsChapter 1 — Introduction
Chapter 2 — Descriptive Statistics
Chapter 3 — Probability
Chapter 4 — Distributions
Chapter 5 — The Normal Distribution
Part II — Statistical InferenceChapter 6 — Hypothesis Testing
Chapter 7 — t-Tests
Chapter 8 — Analysis of Variance (ANOVA)
One-Way ANOVA
Two-Way ANOVA
Repeated-Measures ANOVA
8.4 — Mixed ANOVA
8.5 — Post Hoc Comparisons
Part III — Categorical & Nonparametric MethodsChapter 9 — Chi‑Square Tests
Chapter 10 — Power & Sample Size
Chapter 11 — Nonparametric Tests
Part IV — Regression & PredictionChapter 12 — Correlation & Simple Linear Regression
Chapter 13 — Multiple Linear Regression
Chapter 14 — Logistic Regression
Chapter 15 — Model Selection & Diagnostics
Part V — Computational & Modern TopicsChapter 16 — Big Data & Computational Statistics
Chapter 17 — Machine Learning
Chapter 18 — Resampling & Simulation
AppendicesAppendix A — Statistical Tables
Appendix B — Notation & Symbols
Appendix C — R & Python Quick start
Appendix D — Datasets Catalog
Appendix E — Glossary
Appendix F. Software and Computation Guide
PRE-COLLEGE STATS
Part 1 — Theory • Concepts • Statistical Tests
Chapter 1: What Is Statistics? Why Does It Matter?
Chapter 2 — The Averages
Chapter 3 — Variance & Standard Deviation
Chapter 4 — The Standard Normal Curve
Chapter 5 — Standard Error of the Mean (SEM)
Chapter 6 — The t-test
Chapter 7 — Analysis of Variance (ANOVA)
Chapter 8 — Post Hoc Tests
Chapter 9 — Correlation
Chapter 10 — Regression
Chapter 11 — Non-parametric Tests
Chapter 12 — Chi-square Tests
Chapter 13 — Degrees of Freedom Cookbook
Part 2 — Lecture & Lab
Lecture 1 — Scales of Measurement
Lecture 2 — The Goddess Normal Curve
Lecture 3 — Variance & Standard Deviation
Lecture 4 — Uses of the Normal Distribution
Lecture 5 — The t-test
Lecture 6 — ANOVA (Partitioning the Variance)
Lecture 7 — Factorial Designs (Two-way ANOVA)
Lecture 8 — Repeated-Measures ANOVA
Lecture 9 — Mixed (Split-Plot) ANOVA
Part 3 — Statistical Desing
Identify the Design
Part 4 — Applications (Cases and Examples)
Part 5 — Statistical Tests (Cookbook Style)
Part 6 — Modern Statistics: Data, AI, and Machine Learning
Chapter 14 — Big Data
Chapter 15 — Resampling and Simulation
Chapter 16 — Machine Learning Basics
Chapter 17 — Regression Beyond the Line
Chapter 18 — AI and Neural Networks (Intro)
Chapter 19 — Ethics in Data and AI
Part 7 --- The Storyteller Statistician
Story 1 — Numbers, Quantities, Measurement
Story 2 — No-Number Numbers
Story 3 — The Ordinal Scale of Measurement
Story 4 — The Interval Scale of Measurement
Story 5 — My Zero Is Not Zero
Story 6 — The Goddess Normal Curve
Part 8 --- Appendices
Appendix A — Symbols and Notation (Cheat Sheet)
Appendix B — Math Review for Statistics
Appendix C — Using the t-table and F-table
Appendix D — Using the z-table
Appendix E — Technology Tips (On Your Phone & Laptop)
Appendix F — Data Sets for Practice
Appendix G — Study Tips for Statistics
Appendix H — Glossary of Key Terms






Add new comment